Effect of light-mediated variations of colony morphology on the buoyancy regulation of Microcystis colonies

Authors

Gang Xu, Yanxue Zhang, Tiantian Yang, Huaming Wu, Andreas Lorke, Min Pan, Bangding Xiao, Xingqiang Wu

Light is an important driver of algal growth and for the formation of surface blooms. Long-term buoyancy maintenance of Microcystis colonies is crucial for their aggregation at the water surface and the following algal bloom development. However, the effect of light-mediated variations of colony morphology on the buoyancy regulation of Microcystis colonies remains unclear. In this study, growth parameters, colony morphology and floating-sinking performance of Microcystis colonies were determined to explore how variation in colony morphology influence the buoyancy of colonies under different light conditions. We quantified the colony compactness through the cell volume to colony volume ratio (VR) and found different responses of the colony size and VR under different light intensities: Microcystis colonies with higher VR could stay longer at the water surface under low light conditions, which was beneficial for the long-term growth and buoyancy maintenance. However, increased colony size and decreased compactness were observed at a later growth stage under relatively higher light intensity (i.e., >108 µmol photons m−2 s−1). Interestingly, we found a counterintuitive negative correlation between colony size and buoyancy of Microcystis under high light intensity. Additionally, we found that the influence of colony morphology on buoyancy was stronger at high light intensity. These results indicate that light could regulate the buoyancy via colonial morphology and that the role of colony morphology in buoyancy regulation needs to be accounted in further studies under different environmental conditions.

Photodegradation of organic micropollutants in aquatic environment: Importance, factors and processes

Authors

Zhongyu Guo, Dilini Kodikara, Luthfia Shofi Albi, Yuta Hatano, Guo Chen, Chihiro Yoshimura, Jieqiong Wang

Photochemical reactions widely occur in the aquatic environment and play fundamental roles in aquatic ecosystems. In particular, solar-induced photodegradation is efficient for many organic micropollutants (OMPs), especially those that cannot undergo hydrolysis or biodegradation, and thus can mitigate chemical pollution. Recent reports indicate that photodegradation may play a more important role than biodegradation in many OMP transformations in the aquatic environment. Photodegradation can be influenced by the water matrix such as pH, inorganic ions, and dissolved organic matter (DOM). The effect of the water matrix such as DOM on photodegradation is complex, and new insights concerning the disparate effects of DOM have recently been reported. In addition, the photodegradation process is also influenced by physical factors such as latitude, water depth, and temporal variations in sunlight as these factors determine the light conditions. However, it remains challenging to gain an overview of the importance of photodegradation in the aquatic environment because the reactions involved are diverse and complex. Therefore, this review provides a concise summary of the importance of photodegradation and the major processes related to the photodegradation of OMPs, with particular attention given to recent progress on the major reactions of DOM. In addition, major knowledge gaps in this field of environmental photochemistry are highlighted.

Increasing air temperature relative to water temperature makes the mixed layer shallower, reducing phytoplankton biomass in a stratified lake

Authors

Salla A. Ahonen, Jukka Seppälä, Juha S. Karjalainen, Jonna Kuha, Anssi V. Vähätalo

  1. The depth of the mixed layer is a major determinant of nutrient and light availability for phytoplankton in stratified waterbodies. Ongoing climate change influences surface waters through meteorological forcing, which modifies the physical structure of fresh waters including the mixed layer, but effects on phytoplankton biomass are poorly known.
  2. To determine the responses of phytoplankton biomass to the depth of the mixed layer, light availability and associated meteorological forcing, we followed daily changes in weather and water column properties in a boreal lake over the first half of a summer stratification period.
  3. Phytoplankton biomass increased with the deepening of the mixed layer associated with high wind speeds and low air temperature relative to the temperature of the mixed layer (TairTmix < 0), whereas heatwave conditions—shallow mixed layer driven by high TairTmix value and low wind speed—reduced the biomass.
  4. Improving light availability from low to moderate light conditions increased the phytoplankton biomass, while the highest light availability was associated with low phytoplankton biomass.
  5. Our study demonstrates that the climatic impact-drivers wind speed and TairTmix are major drivers of mixed layer depth, which controlled phytoplankton biomass during the early summer stratification period. Our study suggests that increasing air temperature relative to water temperature and declining wind speeds have potential to lead to reduced phytoplankton biomass due to a shallower mixed layer during the first half of the stratification period in non-eutrophic lakes with sufficient light availability.

Clarifying water clarity: A call to use metrics best suited to corresponding research and management goals in aquatic ecosystems

Authors

Jessica S. Turner, Kelsey A. Fall, Carl T. Friedrichs

Water clarity is a subjective term and can be measured multiple ways. Different metrics such as light attenuation and Secchi depth vary in effectiveness depending on the research or management application. In this essay, we argue that different questions merit different water clarity metrics. In coastal and inland waters, empirical relationships to estimate light attenuation can yield clarity estimates that either under- or overestimate the underwater light climate for restoration goals, such as potential habitat available for submerged aquatic vegetation. Best practices in reporting water clarity measurements include regionally specific, temporally representative calibrations and communicating the metric that was actually measured. An intentional choice of the water clarity metric best suited to the research or management question yields the most useful results.

The binding effect and photooxidation on oxytetracycline with algal extracellular polymeric substances and natural organic matter

Authors

Yu Wang, Xinye Gong, Deying Huang, Shuwen Yan, Jibiao Zhang

Surface water contains a large amount of dissolved organic matter (DOM). Interactions between DOM and micropollutants have a significant impact on micropollutant degradation. In this study, algal extracellular polymeric substances (EPS) and natural organic matter (NOM) were selected as two DOM sources and oxytetracycline (OTC) as a representative micropollutant. EPS was mainly composed of tryptophan and protein-like organics, while NOM was mainly composed of fulvic acid-like, humic acid-like, and hydrophobic acid components. In addition, OTC degradation significantly decreased when bound with EPS and the C=O and C–H bonds of CH2 or CH3 groups may be involved in binding EPS and OTC, respectively, while –COOH may be involved in the binding of NOM and OTC. Furthermore, triplet intermediates were found to play a major role in OTC photodegradation in both EPS and NOM, with the contribution calculated as 49.96% and 44.61%, respectively. Steady-state concentrations of 3EPS* in EPS and 3NOM* in NOM were 3.59 × 10−14 mol L−1 and 5.54 × 10−15 mol L−1, respectively. These results provide new insights into the degradation of antibiotic-containing wastewater in the natural environment or engineering applications.

Driving forces for the growth of MIB-producing Planktothricoides raciborskii in a low-latitude reservoir

Authors

Jinping Lu, Ming Su, Yuliang Su, Bin Wu, Tengxin Cao, Jiao Fang, Jianwei Yu, Honggang Zhang, Min Yang

In comparison with the middle- and high-latitude regions, the low-latitude regions are less associated with the occurrence of 2-methylisoborneol (MIB) episodes, since most of the previously identified MIB producers favor moderate/low light/temperature conditions. Here, we report a serious MIB outbreak over the period from Jul. 2018 to Jun. 2019 in a low-latitude reservoir with a mean annual water temperature of 25.6 °C. The MIB episode lasted for a long period, from Jul. 2018 to Jan. 2019, and Planktothricoides raciborskii was confirmed to be the main MIB producer. The growth characteristics of P. raciborskii were explored through both laboratory culturing and on-site verification experiments. The results indicated that this strain was not nutrient-sensitive at TN > 800 μg L−1 and TP > 10 μg L−1, but favored moderate light intensity (54 μmol photon m−2·s−1) and high temperature (30 °C). The two bloom-forming genera, Limnothrix and Aphanizomenon, favoring lower temperature and similar or relatively higher light intensity, showed much greater proliferation, about 13 folds (Limnothrix) and 58 folds (Aphanizomenon), from Dec. to Jun.; by contrast, the high water temperature (29.9 ± 2.8 °C) and light intensity (189.1 ± 87.6 μmol photon m−2·s−1) from Jul. to Nov. were not favorable to Limnothrix or Aphanizomenon, which might have created an opportunity for the growth of MIB-producing P. raciborskii. In addition, we also found that high temperature could promote the release of MIB from P. raciborskii cells, therefore exerting increased pressure on drinking water treatment processes.

Size-dependent susceptibility of lake phytoplankton to light stress: an implication for succession of large green algae in a deep oligotrophic lake

Authors

Takehiro Kazama, Kazuhide Hayakawa, Takamaru Nagata, Koichi Shimotori, Akio Imai & Kazuhiro Komatsu

Field observations of the population dynamics and measurements of photophysiology in Lake Biwa were conducted by size class (< vs. > 30 μm) from early summer to autumn to investigate the relationships between susceptibility to light stress and cell size. Also, a nutrient bioassay was conducted to clarify whether the growth rate and photosystem II (PSII) photochemistry of small and large phytoplankton are limited by nutrient availability. Large phytoplankton, which have lower intracellular Chl-a concentrations, had higher maximum PSII photochemical efficiency (Fv/Fm) but lower non-photochemical quenching (NPQNSV) than small phytoplankton under both dark and increased light conditions. The nutrient bioassay revealed that the PSII photochemistry of small phytoplankton was restricted by N and P deficiency at the pelagic site even at the end of the stratification period, while that of large phytoplankton was not. These results suggest that large phytoplankton have lower susceptibility to PSII photodamage than small phytoplankton due to lower intracellular Chl-a concentrations. The size dependency of susceptibility to PSII photoinactivation may play a key role in large algal blooms in oligotrophic water.

Lake browning generates a spatiotemporal mismatch between dissolved organic carbon and limiting nutrients

Authors

Jonathan T. Stetler, Lesley B. Knoll, Charles T. Driscoll, Kevin C. Rose

Widespread long-term increases in dissolved organic carbon (DOC) concentrations (i.e., “browning”) have been observed in many lakes, but the ecological consequences are poorly understood. Some studies suggest a unimodal relationship between DOC and primary productivity, with peak productivity at intermediate DOC concentrations. This peak is hypothesized to result from the tradeoff between light absorbing properties of DOC, and increases in limiting nutrients with browning. Nevertheless, it is unclear whether nutrient stoichiometry is constant as lakes brown. Across both regional and national surveys, we found a positive linear relationship between DOC and both total and organic forms of nitrogen and phosphorus. However, long-term data from a suite of browning lakes indicates that total nutrients do not increase as DOC increases through time. Our results show that DOC and limiting nutrients are coupled spatially, but not temporally, and that this temporal mismatch challenges previous conceptualizations of the long-term effects of browning on productivity.

Community shifts from eukaryote to cyanobacteria dominated phytoplankton: The role of mixing depth and light quality

Authors

Maria Stockenreiter,Jana Isanta Navarro,Felicitas Buchberger,Herwig Stibor

  1. Lake stratification strengthens with increasing surface water temperatures, thereby reducing the depth of the mixed layer. Phytoplankton communities are not only exposed to different nutrient availability within a mixed water column, but also to different light quality. We conducted controled laboratory and mesocosm experiments to investigate phytoplankton, especially cyanobacteria, responses to different light quality and mixing depths.
  2. Our mesocosm experiment allowed the manipulation of mixing depth in situ by a mesocosm approach and to follow the effects of changing mixing depth on the phytoplankton community composition. Our laboratory experiment allowed the control of temperature and light quantity. To investigate the effect of light quality on phytoplankton, we created a light gradient from full photosynthetic active radiation to a reduced blue spectrum.
  3. In both experiments, shifts in phytoplankton community composition from eukaryote to cyanobacteria occurred at shallow mixing depth with higher availability of photosynthetic active radiation. Our results from the mesocosm experiment support the idea that reduced mixing depth can promote cyanobacterial abundance. With our laboratory experiment, we were able to manipulate light quality independent of temperature, available nutrients and light intensity influencing phytoplankton abundance. Results from the laboratory experiments support our hypothesis that a shift in light spectrum alone is a driver, strong enough to enhance cyanobacteria occurrence.
  4. Most of the previous studies dealing with cyanobacterial blooms have investigated temperature and eutrophication effects. Certainly, these are major factors for the growth of phytoplankton, but our experiments show that other aspects, such as the quality of light, must be also taken into account to explain cyanobacterial blooms. Such shifts in the phytoplankton community from eukaryote to cyanobacteria dominated communities will have strong consequences for food web dynamics. Several cyanobacteria specific traits, (e.g., toxin production, lack of essential fatty acids, and inedibility through production of large colonies) reduce transfer efficiencies of energy and matter between phyto- and zooplankton and therefore can influence higher trophic levels such as fish.

Photogeochemistry of particulate organic matter in aquatic systems: A review

Authors

Bin Hu, Peifang Wang, Chao Wang, Tianli Bao

Photochemical transformation of natural organic matter in aquatic environments strongly impacts the environmental behaviors of carbon, nutrients, and pollutants by affecting their solubility, toxicity, bioavailability, and mobility. However, the role of particulate organic matter (POM) in environmental photogeochemistry has received much less attention than that of dissolved organic matter (DOM). In this study, a systematic overview was conducted to summarize the photodissolution and photoflocculation of POM in aquatic systems. The photodissolution of various POM, such as resuspended sediments and algal detritus, could be a potential and important source of DOM in the overlying waters, and these photoreleased DOM were dominated by humic-like components. The photogeochemistry of POM is thought to proceed via direct photochemical reactions and reactive radical-dominated indirect processes. Photodissolution can modify the bioavailability of organic matter and influence the biogeochemical cycling of nutrients, heavy metals, and organic pollutants. In addition, the photo-induced flocculation of DOM to POM could also influence the transport and transformation of organic matter and its associated pollutants. The photochemistry of POM can be significantly influenced by several environmental factors, including irradiation wavelength and intensity, organic matter properties, and radical oxygen species. POM photogeochemistry is one of the most important components of the global cycling of natural organic matter. Further studies regarding photogeochemistry should be conducted to overcome the potential problems arising from the concurrent photodegradation of organic matter and to further develop more filed investigations and analytical methods.