Phosphorus enrichment in floodplain subsoils as a potential source of freshwater eutrophication

P in subsoils

Authors

Christoph Weihrauch, Collin Joel Weber

Despite decades of management efforts, freshwater eutrophication has not been effectively mitigated in each affected ecosystem. This might be due to insufficient knowledge of the sources of phosphorus (P) inputs into surface waters. We sampled 2 m-deep soil profiles in four floodplain areas under differently managed grassland in Germany under dry and moist conditions regarding soil moisture and precipitation. Four soil P fractions of decreasing solubility were determined. We found systematic enrichment of easily soluble P forms in the floodplain subsoils (average: from 87.5 cm depth). Water-soluble P in these “deep P stocks” was positively correlated with total phosphorus concentrations in the adjacent surface waters. Our data cautiously suggest increased P mobilization from deep P stocks under moist conditions. Drier conditions coincided with increased P retention, resulting in relatively large amounts of easily soluble P which could readily be desorbed and lost at the next stronger precipitation event. We found no effects of grassland management on deep P stock features and dynamics. Deep P stocks might be considered a new source of diffuse P losses from soils. To effectively mitigate freshwater eutrophication, best management practices need to be developed to minimize P transfer from deep P stocks.

Modeling cyanobacterial blooms in tropical reservoirs: The role of physicochemical variables and trophic interactions

HAB model

Authors

Cihelio Alves Amorim, Ênio Wocyli Dantas, Ariadne do Nascimento Moura

Understanding the importance of environmental variables on the dominance of cyanobacteria is crucial for appropriately managing water resources. Although studies about temperate and subtropical regions show a high influence of nutrients and temperature on blooms, this relationship is still unclear for the tropics. Accordingly, we hypothesized that nutrients and temperature are the main factors driving cyanobacterial blooms in tropical reservoirs, and those relationships are intensified by the zooplankton. To test these hypotheses, we constructed a structural equation model based on the monitoring of ten reservoirs from Northeast Brazil. We analyzed the effects of physicochemical variables and zooplankton on cyanobacterial blooms and the biomass of four morphotypes. Cyanobacterial biomass varied within the reservoirs, with bloom records (0.2–268.4 mg L−1) in all of them, primarily constituted by the colonial morphotype, followed by picocyanobacteria, heterocyted, and non-heterocyted filaments. The cyanobacterial community was driven mainly by chemical variables (55.14% of the variation), followed by physical (48.28%), and zooplankton (39.47%). Through the structural equation model, we demonstrated that total cyanobacterial biomass, as well as the morphotypes, were mainly influenced by omnivorous crustaceans and total dissolved phosphorus. Solar radiation, air temperature, mixing zone, and salinity were important to explain the biomass of the morphotypes. The model explained most of the variation in the picocyanobacterial blooms (79.8%), followed by total cyanobacteria (62.4%), heterocyted filaments (59.1%), non-heterocyted filaments (58.2%), and coccoids (55.1%). Zooplankton groups were also influenced by the physicochemical variables, which presented direct and indirect effects on cyanobacteria. Given the predictions of increased eutrophication, warming, and salinization, cyanobacterial blooms will become more intense in tropical reservoirs. Thus, restoring measures must be adopted to reduce bloom development, such as external phosphorus and salt loadings, and biomanipulation.

Mitigating the global expansion of harmful cyanobacterial blooms: Moving targets in a human- and climatically-altered world

HAB mitigation

Authors

Hans W. Paerl, Malcolm A. Barnard

Cyanobacterial harmful algal blooms (CyanoHABs) are a major threat to human and environmental health. As global proliferation of CyanoHABs continues to increase in prevalence, intensity, and toxicity, it is important to identify and integrate the underlying causes and controls of blooms in order to develop effective short- and long-term mitigation strategies. Clearly, nutrient input reductions should receive high priority. Legacy effects of multi-decadal anthropogenic eutrophication have altered limnetic systems such that there has been a shift from exclusive phosphorus (P) limitation to nitrogen (N) limitation and N and P co-limitation. Additionally, climate change is driving CyanoHAB proliferation through increasing global temperatures and altered precipitation patterns, including more extreme rainfall events and protracted droughts. These scenarios have led to the “perfect storm scenario”; increases in pulsed nutrient loading events, followed by persistent low-flow, long water residence times, favoring bloom formation and proliferation. To meet the CyanoHAB mitigation challenge, we must: (1) Formulate watershed and airshed-specific N and P input reductions on a sliding scale to meet anthropogenic and climatic forcings. (2) Develop CyanoHAB management strategies that incorporate current and anticipated climatic changes and extremes. (3) Make nutrient management strategies compatible with other physical-chemical-biological mitigation approaches, such as altering freshwater flow and flushing, dredging, chemical applications, introduction of selective grazers, etc. (4) Target CyanoHAB toxin production and developing management approaches to reduce toxin production. (5) Develop broadly applicable long-term strategies that incorporate the above recommendations.

Composition characterization and biotransformation of dissolved, particulate and algae organic phosphorus in eutrophic lakes

Organic P+Algae

Authors

Weiying Feng, Fang Yang, Chen Zhang, Jing Liu, Fanhao Song, Haiyan Chen, Yuanrong Zhu, Shasha Liu, John P. Giesy

Characteristics and transformation of organic phosphorus in water are vital to biogeochemical cycling of phosphorus and support of blooms of phytoplankton and cyanobacteria. Using solution 31P nuclear magnetic resonance (NMR), combined with field surveys and lab analyses, composition and structural characteristics of dissolved phosphorus (DP), particulate phosphorus (PP) and organic P in algae were studied in two eutrophic lakes in China, Tai Lake and Chao Lake. Factors influencing migration and transformation of these constituents in lake ecosystems were also investigated. A method was developed to extract, flocculate and concentrate DP and PP from lake water samples. Results showed that orthophosphate (Ortho-P) constituted 32.4%–81.3% of DP and 43.7%–54.9% of PP, respectively; while monoester phosphorus (Mono-P) was 13.2%–54.0% of DP and 32.9%–43.7% of PP, respectively. Phosphorus in algae was mostly organic P, especially Mono-P, which was ≥50% of TP. Environmental factors and water quality parameters such as temperature (T), electrical conductivity (EC), pH, secchi depth (SD), dissolved oxygen (DO), chemical oxygen demand (CODcr), chlorophyll-a (Chl-a), affected the absolute and relative concentrations of various P components in the two lakes. Increased temperature promoted bioavailable P (Ortho-P and Mono-P) release to the lake waters. The results can provide an important theoretical basis for the mutual conversion process of organic P components between various media in the lake water environment.

Physiological and biochemical responses of Microcystis aeruginosa to phosphine (PH3) under elevated CO2

BGA phosphine

Authors

Xiaojun Niu, Dongqing Zhang, Runyuan Zhang, Qi Song, Yankun Li, Mo Wang

Phosphine (PH3) is an important factor driving the outbreak of cyanobacterial blooms that produce toxic microcystin threating human health. To clarify the physiological and biochemical responses of cyanobacteria to PH3 under elevated CO2 concentration, Microcystis aeruginosa was used in the coupling treatment of 1000 ppmv CO2 and PH3 at different concentrations respectively. The chlorophyll a (Chl-a), carotenoid, net photosynthetic rate and total protein of M. aeruginosa exhibited evidently increasing tendency under the coupling treatment of 1000 ppmv CO2 and PH3 at different concentrations (7.51 × 10−3, 2.48 × 10−2, 7.51 × 10−2 mg/L). The coupling treatments resulted in the higher concentrations of Chl-a and carotenoid of M. aeruginosa, compared to those in the control and the treatment with CO2 alone, and their enhancement increased with the increase in PH3 concentrations. The total antioxidant capacity (T-AOC) in the coupling treatment with CO2 and PH3 of 2.48 × 10−2 mg/L and 7.51 × 10−3 mg/L showed increasing tendency, compared to the treatment with PH3 alone. Additionally, the coupling treatment with 1000 ppmv CO2 and PH3 also altered the pH and DO level in the culture medium. In this regard, the coupling treatment with CO2 and PH3 at an appropriate concentration can enhance the resistance of M. aeruginosa to PH3 toxicity and is beneficial to the reproduction of M. aeruginosa, presumably resulting in potential for the outbreak of cyanobacteria bloom. Given the concern about global warming and the increase in atmospheric CO2 level, our research laid a foundation for the scientific understanding of the correlation between PH3 and cyanobacteria blooms.

Carbon and nutrients transfer from primary producers to lake sediments – a stoichiometric approach

chl+orga and inorg C

Authors

Lech Kufel, Małgorzata Strzałek, Elżbieta Biardzka, Marcin Becher

We aimed to demonstrate different input of organic and inorganic carbon, nitrogen and phosphorus from three main groups of primary producers (phytoplankton, charophytes and vascular submerged macrophytes) to respective lake sediments. Studies were carried out in one eutrophic and two mesotrophic lakes. Samples of sediments were taken from profundal and from littoral zones, the latter divided into such overgrown by charophytes and others covered by vascular submerged macrophytes. We applied a stoichiometric approach to illustrate variable functional carbon to nutrients relationships. Among profundal sediments, the lowest organic to inorganic carbon ratio was found in sediments from the eutrophic lake due to precipitation of calcium carbonate during algal blooms. Extremely low inorganic carbon input to profundal sediment of one of the mesotrophic lakes may be explained by low phytoplankton production but also by dissolution of once deposited calcium carbonates. Charophyte-dominated littoral sediments contained significantly more inorganic carbon than other littoral and profundal sediments. Comparison of stoichiometric ratios between plant standing crop and underlying littoral sediments showed significant enrichment of sediments in nitrogen manifested by reduction of organic carbon to total nitrogen ratio during plant decomposition taking place both in charophyte and in vascular plant stands. We also attempted to divide phosphorus pool in sediments into organic P and calcium-bound P present in charophyte stands and in profundal sediments of eutrophic lake. In the former, calcium-bound P was estimated at 17–19% of the total P pool while in profundal sediments it amounted 42% of the total P. This difference suggests that calcium carbonate settling during algal blooms in a eutrophic lake may be more effective in P trapping than calcite encrustations covering charophyte plants in littoral sites. In conclusions, we underline the need of considering often neglected inorganic fractions of carbon and phosphorus to get better insight into carbon and nutrient burial in lake sediments.

Nitrogen Stimulates Microcystis-Dominated Blooms More than Phosphorus in River Conditions That Favor Non-Nitrogen-Fixing Genera

Microcystis+N

Authors

Kyunghyun Kim, Hyunsaing Mun, Hyunjoo Shin, Sanghyun Park, Chungseok Yu, Jaehak Lee, Yumi Yoon, Hyeonsu Chung, Hyeonjeong Yun, Kyunglak Lee, Geonhee Jeong, Jin-a Oh, Injung Lee, Haejin Lee, Taewoo Kang, Hui Seong Ryu, Jonghwan Park, Yuna Shin, and Doughee Rhew

Despite the implementation of intensive phosphorus reduction measures, periodic outbreaks of cyanobacterial blooms in large rivers remain a problem in Korea, raising the need for more effective solutions to reduce their occurrence. This study sought to evaluate whether phosphorus or nitrogen limitation is an effective approach to control cyanobacterial (Microcystis) blooms in river conditions that favor this non-nitrogen-fixing genus. These conditions include nutrient enrichment, high water temperature, and thermal stratification during summer. Mesocosm bioassays were conducted to investigate the limiting factors for cyanobacterial blooms in a river reach where severe Microcystis blooms occur annually. We evaluated the effect of five different nitrogen (3, 6, 9, 12, and 15 mg/L) and phosphorus (0.01, 0.02, 0.05, 0.1, and 0.2 mg/L) concentrations on algae growth. The results indicate that nitrogen treatments stimulated cyanobacteria (mostly Microcystis aeruginosa) more than phosphorus. Interestingly, phosphorus additions did not stimulate cyanobacteria, although it did stimulate Chlorophyceae and Bacillariophyceae. We conclude that phosphorus reduction might have suppressed the growth of Chlorophyceae and Bacillariophyceae more than that of cyanobacteria; therefore, nitrogen or at least both nitrogen and phosphorus control appears more effective than phosphorus reductions alone for reducing cyanobacteria in river conditions that are favorable for non-nitrogen-fixing genera.

The influences of historic lake trophy and mixing regime changes on long-term phosphorus fraction retention in sediments of deep eutrophic lakes: a case study from Lake Burgäschi, Switzerland

Lake P

Authors

Luyao Tu, Paul Zander, Sönke Szidat, Ronald Lloren, and Martin Grosjean

Hypolimnetic anoxia in eutrophic lakes can delay lake recovery to lower trophic states via the release of sediment phosphorus (P) to surface waters on short timescales in shallow lakes. However, the long-term effects of hypolimnetic redox conditions and trophic state on sedimentary P fraction retention in deep lakes are not clear yet. Hypolimnetic withdrawal of P-rich water is predicted to diminish sedimentary P and seasonal P recycling from the lake hypolimnion. Nevertheless, there is a lack of evidence from well-dated sediment cores, in particular from deep lakes, about the long-term impact of hypolimnetic withdrawal on sedimentary P retention. In this study, long-term sedimentary P fraction data since the early 1900s from Lake Burgäschi provide information on benthic P retention under the influence of increasing lake primary productivity (sedimentary green-pigment proxy), variable hypolimnion oxygenation regimes (Fe∕Mn ratio proxy), and hypolimnetic withdrawal since 1977. Results show that before hypolimnetic withdrawal (during the early 1900s to 1977), the redox-sensitive Fe∕Mn-P fraction comprised ∼50 % of total P (TP) in the sediment profile. Meanwhile, long-term retention of total P and labile P fractions in sediments was predominantly affected by past hypolimnetic redox conditions, and P retention increased in sedimentary Fe- and Mn-enriched layers when the sediment-overlaying water was seasonally oxic. However, from 1977 to 2017, due to eutrophication-induced persistent anoxic conditions in the hypolimnion and to hypolimnetic water withdrawal increasing the P export out of the lake, net burial rates of total and labile P fractions decreased considerably in surface sediments. By contrast, refractory Ca–P fraction retention was primarily related to lake primary production. Due to lake restoration since 1977, the Ca–P fraction became the primary P fraction in sediments (representing ∼39 % of total P), indicating a lower P bioavailability of surface sediments. Our study implies that in seasonally stratified eutrophic deep lakes (like Lake Burgäschi), hypolimnetic withdrawal can effectively reduce P retention in sediments and potential for sediment P release (internal P loads). However, after more than 40 years of hypolimnetic syphoning, the lake trophic state has not improved nor has lake productivity decreased. Furthermore, this restoration has not enhanced water column mixing and oxygenation in hypolimnetic waters. The findings of this study are relevant regarding the management of deep eutrophic lakes with mixing regimes typical for temperate zones.

Effect of eutrophication and humification on nutrient cycles and transfer efficiency of matter in freshwater food webs

Cladocera+Cyano

Authors

Maciej Karpowicz, Piotr Zieliński, Magdalena Grabowska, Jolanta Ejsmont-Karabin, Joanna Kozłowska & Irina Feniova

We evaluated how eutrophication and humification impacted nutrient cycles and the efficiency of carbon transfer in the planktonic food webs of 12 lakes in north-eastern Poland that differed in trophic state. Our results indicated that the effectiveness of carbon transfer between phytoplankton and zooplankton varied from 0.0005% to 0.14%, which is much lower than the theoretical 10%. The highest efficiency of carbon transfer occurred in the mesotrophic lakes due to the higher hypolimnetic zooplankton production, while the lowest efficiency was observed in the dystrophic lakes and in one eutrophic lake that was dominated by cyanobacteria. Inedible algae (e.g. Gonyostomum semen) and cyanobacteria appeared to be the main factors reducing the efficiency of the transfer of matter in pelagic food webs. The results of our study showed that plankton communities are a key component of the nutrient cycle in freshwater food webs. Phytoplankton were a very effective nitrogen sink, and in the mesotrophic lakes, up to 99% of the total nitrogen was sequestrated in phytoplankton. As a result, there was a depletion of inorganic nitrogen in the upper water layer. Furthermore, zooplankton were an important phosphorus sink, thus significantly influencing the nutrient cycles.

Harmful algae at the complex nexus of eutrophication and climate change

HAB nexus

Author

Patricia M.Glibert

Climate projections suggest–with substantial certainty–that global warming >1.5 °C will occur by mid-century (2050). Population is also projected to increase, amplifying the demands for food, fuel, water and sanitation, which, in turn, escalate nutrient pollution. Global projections of nutrient pollution, however, are less certain than those of climate as there are regionally decreasing trends projected in Europe, and stabilization of nutrient use in North America and Australia. In this review of the effects of eutrophication and climate on harmful algae, some of the complex, subtle, and non-intuitive effects and interactions on the physiology of both harmful and non-harmful taxa are emphasized. In a future ocean, non-harmful diatoms may be disproportionately stressed and mixotrophs advantaged due to changing nutrient stoichiometry and forms of nutrients, temperature, stratification and oceanic pH. Modeling is advancing, but there is much yet to be understood, in terms of physiology, biogeochemistry and trophodynamics and how both harmful and nonharmful taxa may change in an uncertain future driven by anthropogenic activities.