Microcystin as a biogeochemical cycle: Pools, fluxes, and fates of the cyanotoxin in inland waters

Authors

Quin K. Shingai, Grace M. Wilkinson

Microcystin poses a serious threat to aquatic ecosystems and human health. There is a pressing need to understand the production, movement, and storage of microcystin in lakes. We constructed a conceptual biogeochemical model for microcystin through a comprehensive literature synthesis, identifying four major pools and nine major fluxes in lakes that also connect to the terrestrial environment. This conceptual model can be used as the framework for developing ecosystem mass balances of microcystin. We propose that the concentration of microcystin in the water column is the balance between the import, sediment translocation, production and degradation, uptake, burial, and export. However, substantial unknowns remain pertaining to the magnitude and movement of microcystin. Future investigations should focus on sediment fluxes, drivers of biodegradation, and seasonal dynamics. Adopting the framework of a “microcystin cycle” improves our understanding of processes driving toxin prevalence and helps to prioritize strategies for minimizing exposure risks.

Changes of DOM and its correlation with internal nutrient release during cyanobacterial growth and decline in Lake Chaohu, China

Authors

Yan Bao, Tao Huang, Chengwu Ning, Tingting Sun, Pengliang Tao, Jie Wang, Qingye Sun

The seasonal changes in dissolved organic matter (DOM), and its correlation with the release of internal nutrients during the annual cycle of cyanobacteria in the eutrophic Lake Chaohu, China, were investigated from four sampling periods between November 2020 and July 2021. The DOM fluorescence components were identified as protein-like C1, microbial humic-like C2, and terrestrial humic-like C3. The highest total fluorescence intensity (FT) of DOM in sediments during the incubation stage is due to the decomposition and degradation of cyanobacteria remains. The lowest humification of DOM and the highest proportion of C1 in waters during the initial cyanobacterial growth indicate that fresh algae are the main source. The highest molecular weight of DOM and FT of the C2 in sediments during cyanobacterial outbreaks indicate the concurrent deposition of undegraded cyanobacterial remains and microbial degradation. The components of DOM are affected mainly by the dissolved total phosphorus in waters, while the temperature drives the annual cycle of cyanobacteria. The decreasing C1 in sediments and increasing nutrients in waters from the cyanobacterial incubation to outbreak indicate that mineralization of algal organic matter contributes importantly to the release of internal nutrients, with the strongest release of phosphorus observed during the early growth of cyanobacteria. The humic-like C2 and C3 components could also affect the dynamics of internal phosphorus through the formation of organic colloids and organic–inorganic ligands. The results show that the degradation of DOM leads to nutrients release and thus supports the continuous growth of cyanobacteria in eutrophic Lake Chaohu.

From macrophyte to algae: Differentiated dominant processes for internal phosphorus release induced by suspended particulate matter deposition

Authors

Cheng Liu, Yiheng Du, Jicheng Zhong, Lei Zhang, Wei Huang, Chao Han, Kaining Chen, Xiaozhi Gu

In shallow lakes, eutrophication leads to a shift of the macrophyte-dominated clear state towards an algae-dominated turbid state. Phosphorus (P) is a crucial element during this shift and is usually concentrated in the suspended particulate matter (SPM) in water. However, the dominant processes controlling internal P release in the algae- (ADA) and macrophyte-dominated (MDA) areas under the influence of P-concentrated SPM remains unclear. In this study, we conducted monthly field observations of P exchange across the sediment-water interface (SWI) with the deposition of SPM in the ADA and MDA of Lake Taihu. Results revealed that both algae- and macrophyte-originated SPM led to the depletion of oxygen across the SWI during summer and autumn. Redox-sensitive P (Fe-P) and organic P (Org-P) were the dominant mobile P fractions in both areas. High fluxes of P across the SWI were observed in both areas during the summer and autumn. However, the processes controlling P release were quite different. In MDA, P release was mostly controlled by a traditional Fe-P dissolution process influenced by the coupled cycling of iron, sulfur, and P. In the ADA, Org-P control was intensified with the deterioration of algal bloom status, accompanied with the dissolution of Fe-P. Evidence from the current study revealed that the dominant process controlling the internal P release might gradually shift from Fe-P to a coupled process of Fe-P and Org-P with the shift of the macrophyte- to an algae-dominated state in shallow eutrophic lakes. The differentiated processes in the MDA and ADA should be given more attention during future research and management of internal P loadings in eutrophic lakes.

Drivers of spatial and seasonal variations of CO2 and CH4 fluxes at the sediment water interface in a shallow eutrophic lake

Authors

Heyang Sun, Ruihong Yu, Xinyu Liu, Zhengxu Cao, Xiangwei Li, Zhuangzhuang Zhang, Jun Wang, Shuai Zhuang, Zheng Ge, Linxiang Zhang, Liangqi Sun, Andreas Lorke, Jie Yang, Changwei Lu, Xixi Lu

Shallow eutrophic lakes contribute disproportional to the emissions of CO2 and CH4 from inland waters. The processes that contribute to these fluxes, their environmental controls, and anthropogenic influences, however, are poorly constrained. Here, we studied the spatial variability and seasonal dynamics of CO2 and CH4 fluxes across the sediment-water interface, and their relationships to porewater nutrient concentrations in Lake Ulansuhai, a shallow eutrophic lake located in a semi-arid region in Northern China. The mean concentrations of CO2 and CH4 in porewater were 877.8 ± 31.0 µmol L−1 and 689.2 ± 45.0 µmol L−1, which were more than 50 and 20 times higher than those in the water column, respectively. The sediment was always a source of both gases for the water column. Porewater CO2 and CH4 concentrations and diffusive fluxes across the sediment-water interface showed significant temporal and spatial variations with mean diffusive fluxes of 887.3 ±124.7 µmol m−2 d−1 and 607.1 ± 68.0 µmol m−2 d−1 for CO2 and CH4, respectively. The temporal and spatial variations of CO2 and CH4 concentrations in porewater were associated with corresponding variations in dissolved organic carbon and dissolved nitrogen species. Temperature and dissolved organic carbon in surface porewater were the most important drivers of temporal variations in diffusive fluxes, whereas dissolved organic carbon and nitrogen were the main drivers of their spatial variations. Diffusive fluxes generally increased with increasing dissolved organic carbon and nitrogen in the porewater from the inflow to the outflow region of the lake. The estimated fluxes of both gases at the sediment-water interface were one order of magnitude lower than the emissions at the water surface, which were measured in a companion study. This indicates that diffusive fluxes across the sediment-water interface were not the main pathway for CO2 and CH4 emissions to the atmosphere. To improve the mechanistic understanding and predictability of greenhouse gas emissions from shallow lakes, future studies should aim to close the apparent gap in the CO2 and CH4 budget by combining improved flux measurement techniques with process-based modeling.

Production and transformation of organic matter driven by algal blooms in a shallow lake: Role of sediments

Authors

Ying Xun Du, Shi Lin An, Hu He, Shuai Long Wen, Peng Xing, Hong Tao Duan

The generation of organic matter (OM) occurs synchronously with phytoplankton growth. Characterization of the generated particulate and dissolved OM during algal blooms in eutrophic lakes is crucial for better understanding the carbon cycle but remains limited. We speculate that sediments play a critical role in the biogeochemical transformation of OM derived from algal blooms in shallow lakes. In this study, changes in OM quantity and quality and the concentrations of biogenic elements (nutrients and metals) during algal blooms, were studied in situ in a shallow eutrophic lake (Lake Chaohu, China). Two enclosure treatments in the presence and absence of sediments were compared, and the cause-effect relationships among sediment, nutrients, metals, phytoplankton, particulate OM (POM), and dissolved OM (DOM) were revealed by a partial least square-path model (PLS-PM). The results showed that the changes in nutrients and metals concentrations over time were consistent with that of chlorophyll a (Chl a), and at the end of the treatment, the concentrations of Chl a, nutrients, and metals in Treatment S (with sediments) were approximately 3–5 times of those in Treatment N (without sediments). The high concentration of Chl a in Treatment S resulted in a high quantity of POM, which showed low molecular weight, low humification, and was enriched in protein-like components (∼ 70%). For DOM, the quantity increased after the decrease in POM, and DOM quality showed a significantly higher abundance of humic-like components and a higher molecular weight than POM did. The PLS-PM results showed that the significant positive effects of sediment on nutrients, metals, phytoplankton, POM, and DOM were 0.28, 0.37, 0.28, 0.25, and 0.25, respectively, suggesting that sediment had an important role in the biogeochemical cycles of these substances. The significant negative relationship between POM and DOM (-0.62) and the distinct difference in POM and DOM quality implied the efficient transformation of the freshly generated OM to those with a higher molecular weight, higher humification, and potentially refractory. Our results depicted the quick biogeochemical transformation of nutrients, metals, and the potential formation of refractory organic carbon in water column, as driven by the couple of the algae pump with the microbial carbon pump.

Historical changes of sedimentary P-binding forms and their ecological driving mechanism in a typical “grass-algae” eutrophic lake

Authors

Shuai Ding, Yan Liu, Solomon Felix Dan, Lixin Jiao

With the transformation of lake ecosystem from “clear water” to “turbid water”, the residual phosphorus (P) accumulated in sediments may slow down the process of aquatic ecological restoration, and the related mechanisms are complex and need to be better understood. In this study, high-resolution systematic investigation and analysis of P-binding forms in the sediments showed that Lake Dianchi, the largest plateau lake in Southwest China, was enriched with NaOH-rP, HCl-P and Res-P, but depleted in NH4Cl-P, BD-P and NaOH-nrP. The BD-P, NaOH-nrP and NaOH-rP were the main contributors to potential P release from sediments, while the release potential of NH4Cl-P was relatively weak (<1%). When the external P loading gradually decreased, the internal P loading of Lake Dianchi was estimated to be 522 mg P/(m2•a) in the past 30 years. The succession of “grass-algae” type in Lake Dianchi coincided with reduced absorption and transformation of potential mobile P and decreased accumulation of stable P, especially the Res-P. Meanwhile, the temporal variation of potential mobile P was a good predictor of ecological degradation and reduced ecosystem sustainability in Lake Dianchi.

Water-sediment interactions and mobility of heavy metals in aquatic environments

Authors

Lorena S. Miranda, Buddhi Wijesiri, Godwin A. Ayoko, Prasanna Egodawatta, Ashantha Goonetilleke

The adsorption-desorption behaviour of heavy metals in aquatic environments is complex and the processes are regulated by the continuous interactions between water and sediments. This study provides a quantitative understanding of the effects of nutrients and key water and sediment properties on the adsorption-desorption behaviour of heavy metals in riverine and estuarine environments. The influence levels of the environmental factors were determined as conditional regression coefficients. The research outcomes indicate that the mineralogical composition of sediments, which influence other sediment properties, such as specific surface area and cation exchange capacity, play the most important role in the adsorption and desorption of heavy metals. It was found that particulate organic matter is the most influential nutrient in heavy metals adsorption in the riverine environment, while particulate phosphorus is more important under estuarine conditions. Dissolved nutrients do not exert a significant positive effect on the release of heavy metals in the riverine area, whilst dissolved phosphorus increases the transfer of specific metals from sediments to the overlying water under estuarine conditions. Furthermore, the positive interdependencies between marine-related ions and the release of most heavy metals in the riverine and estuarine environments indicate an increase in the mobility of heavy metals as a result of cation exchange reactions.

A 25-year retrospective analysis of factors influencing success of aluminum treatment for lake restoration

Authors

O. Agstam-Norlin, E. E. Lannergård, E. Rydin, M. N. Futter, B. J. Huser

For more than 50 years, aluminum (Al)-salts have been used with varying degrees of success to inactivate excess mobile phosphorus (P) in lake sediments and restore lake water quality. Here, we analyzed the factors influencing effectiveness and longevity of Al-treatments performed in six Swedish lakes over the past 25 years. Trends in post-treatment measurements of total phosphorus (TP), Chlorophyll a (Chl_a), Secchi disk depth (SD) and internal P loading rates (Li) were analyzed and compared to pre-treatment conditions. All measured water quality parameters improved significantly during at least the first 4 years post-treatment and determination of direct effects of Al-treatment on sediment P release (Li) was possible for three lakes. Improvements in TP (-29 to -80%), Chl_a (-50 to -78%), SD (7 to 121%) and Li (-68 to -94%) were observed. Treatment longevity, determined via decreases in surface water TP after treatment, varied from 7 to >47 years. Lake type, Al dose, and relative watershed area were related to longevity. In addition, greater binding efficiency between Al and P was positively related to treatment longevity, which has not previously been shown. Our findings also demonstrate that adequate, long-term monitoring programs, including proper determination of external loads, are crucial to document the effect of Al-treatment on sediment P release and lake water quality.

Water-level fluctuations regulate the availability and diffusion kinetics process of phosphorus at lake water–sediment interface

Authors

Hezhong Yuan, Haixiang Wang, Yanwen Zhou, Bingchan Jia, Jianghua Yu, Yiwei Cai, Zhen Yang, Enfeng Liu, Qiang Li, Hongbin Yin

Sequential extraction and in-situ diffusive gradients in thin films (DGT) techniques were used to determine phosphorus (P) fractions and high-resolution 2D fluxes of labile PDGT, Fe2+DGT, and S2−DGT in sediment systems. The diffusion fluxes were subsequently calculated for different scenarios. Dynamic diffusion parameters between solid sediment and solution were also fitted using the DIFS (DGT-induced fluxes in sediments) model. The results suggested that Fe-bound P (Fe-P) was the dominant pool which contributed to the resupply potential of P in the water–sediment continuum. Significant upward decreases of labile PDGT, Fe2+DGT, and S2−DGT fluxes were detected in pristine and incubated microcosms. This dominance indicated the more obvious immobilization of labile P via oxidation of both Fe2+ and S2− in oxidic conditions. Additionally, these labile analytes in the microcosms obviously decreased after a 30-day incubation period, indicating that water-level fluctuations can significantly regulate adsorption–desorption processes of the P bound to Fe-containing minerals within a short time. Higher concentrations of labile PDGT, Fe2+DGT, and S2−DGT were measured at the shallow lake region where more drastic water-level variation occurred. This demonstrates that frequent adsorption–desorption of phosphate from the sediment particles to the aqueous solution can result in looser binding on the solid sediment surface and easier desorption in aerobic conditions via the regulation of water levels. Higher R values fitted with DIFS model suggested that more significant desorption and replenishment effect of labile P to the aqueous solution would occur in lake regions with more dramatic water-level variations. Finally, a significant positive correlation between S2−DGT and Fe2+ DGT in the sediment indicated that the S2− oxidization under the conditions of low water-level can trigger the reduction of Fe(III) and subsequent release of active P. In general, speaking, frequent water-level fluctuations in the lake over time facilitated the formation and retention of the Fe(II) phase in the sediment, and desorption of Fe coupled P into the aqueous solution when the water level was high.

Bioturbation frequency alters methane emissions from reservoir sediments

Authors

Michael T. Booth, Megan Urbanic, XiaWang, Jake J. Beaulieu

Inland aquatic systems are major global contributors to the atmospheric carbon budget through greenhouse gas (GHG) emissions, although the amount and form of carbon released varies widely across and within systems. Bioturbation of aquatic sediments can impact biogeochemical conditions and physically release sediment-bound bubbles containing GHGs, but variation in the frequency of such disturbance may modify the rate and composition of resulting GHG emissions. We hypothesized that an intermediate bioturbation frequency would result in the greatest methane (CH4) releases due to mechanical release of trapped bubbles, while frequent disturbance would result in greater diffusive carbon dioxide (CO2) releases relative to CH4, due to increased aeration of the sediment. We tested this bioturbation frequency hypothesis using laboratory mesocosms containing homogenized reservoir sediment. We used mechanical disturbance to simulate bioturbation at 3, 7, 14, or 21-day intervals; a control treatment was undisturbed for the duration of the experiment. We measured GHG emission (ebullition and diffusion) rates. An intermediate frequency of disturbance (7 days) produced the highest total GHG emission rate, while the most frequent disturbance interval (3 days) and least frequent interval (0 days) reduced overall GHG emissions relative to weekly disturbance by 24% and 15%, respectively. These patterns were primarily driven by differences in CH4 ebullition. Contrary to our hypothesis, there was no relationship between disturbance frequency and diffusive CO2 emissions. For all disturbance treatments, the majority of ebullition occurred during disturbance events, suggesting mechanical release of entrapped bubbles is an important emission mechanism. The frequency of disturbance has variable effects on GHG emissions and may explain conflicting results in prior studies of bioturbation. Our study provides insight into bioturbation as a driver of within-system variation in GHG emissions and highlights that variable bioturbation frequency results in non-linear responses in CH4 emissions, a globally important GHG, from reservoir sediments.