The use of Chara spp. (Charales: Characeae) as a bioindicator of physico-chemical habitat suitability for an endangered crayfish Austropotamobius pallipes in lentic waters

Authors

David Beaune, Yann Sellier, Élisabeth Lambert, Frédéric Grandjean

  1. Austropotamobius pallipes is an endangered decapod attracting much attention in freshwater conservation programmes. In some cases population transfers or reintroductions are carried out in lentic ecosystems such as ponds or quarries. Such conservation actions require rapid, low cost and powerful tools to census suitable habitat.
  2. Some species of the Characeae family (Chara spp.), share ecological needs with A. pallipes and are proposed as bioindicators of suitable habitat. Chara species were tested, among other plants, as bioindicators, and to see whether Chara species are a stronger indicator than water chemistry.
  3. The Pinail Nature Reserve, with 3000 permanent ponds, is inhabited by white-clawed crayfish probably introduced historically into ponds used for fish production. This allows a replicated study of suitable habitats where plant communities are bioindicators of crayfish presence.
  4. Crayfish presence is associated with Chara species (such as Chara aspera, Chara virgata, Chara fragifera, Chara polyacantha and Chara vulgaris). Austropotamobius pallipes is present in ponds with Chara spp. (N = 10/10) while other ponds without crayfish are lacking charophytes (N = 1/23). Algae of the genus Chara are thus a simple and low-cost additional tool for determining suitable habitat for crayfish introductions within enclosed waters protected from exotic invasive species and disease. Cladium mariscus also appears to be another useful bioindicator for crayfish habitat.

Thermal responses of three native fishes from estuarine areas of the Beagle Channel, and their implications for climate change

Authors

María Eugenia Lattuca, Claudia Clementina Boy, Fabián Alberto Vanella, María Eugenia Barrantes, Daniel Alfredo Fernández

The aim of this work was to analyze the thermal responses of Odontesthes nigricans, Eleginops maclovinus and diadromous Galaxias maculatus, key species in estuarine areas of the Beagle Channel (Tierra del Fuego, Argentina), under a climate change scenario. We hypothesized that in the southernmost limit of the species’ distribution, individuals are more likely to be affected by indirect consequences of climate change rather than direct temperature mortality. Their thermal tolerance limits were assessed using the Critical Thermal Methodology and their preferred temperatures, using a thermal gradient. Additionally, the Fulton’s condition factor and the energy density of individuals were analyzed as a proxy of the condition of fishes acclimated to different temperatures. Results showed that species analyzed have the ability to acclimate to the different temperatures, intermediate to large tolerance polygons and positive relationships between preferred and acclimation temperatures, indicating their eurythermic nature. Thus, O. nigricans, E. maclovinus and diadromous G. maculatus populations from Tierra del Fuego could experience enhanced performances because of moderate warming being and, as it was hypothesized, be influenced by indirect consequences of climate change (habitat degradation or changes in trophic structure) since they are living in environments that are widely cooler than their maximum tolerance.

Evaluating the Costs of Cutting Phosphorus in Ontario

Ontario P

Nutrient loadings (particularly phosphorus) from human, agricultural, and industrial waste, combined with climate change, changes in land use patterns, and invasive species are creating algal blooms in Ontario’s lakes. In some cases, the blooms involve blue-green algae, which can produce harmful toxins. There is no doubt that the rising trend of algal blooms across Ontario’s lakes needs to be addressed by more phosphorus controls.

To be prudent, the province of Ontario needs to focus on the greatest phosphorus reductions at the least cost when developing additional controls—not just financial, but also environmental, energy, and carbon costs. From this perspective, how do the increasingly stringent phosphorus effluent limits currently being applied to some Ontario wastewater treatment plants measure up?

Read more here.

Inferring scale-dependent processes influencing stream water biogeochemistry from headwater to sea

Authors

Tejshree Tiwari, Ishi Buffam, Ryan A. Sponseller, Hjalmar Laudon

Understanding how scale-dependent processes regulate patterns of water chemistry remains a challenge in aquatic biogeochemistry. This study evaluated how chemical properties of streams and rivers vary with drainage size and explored mechanisms that may underlie nonlinear changes with increasing scale. To do this, we contrasted concentrations of total organic carbon (TOC) with pH and cations (Ca and Mg) from 69 catchments in northern Sweden, spanning a size gradient from headwaters (< 0.01 km2) to major rivers and estuaries (> 100,000 km2). Across this gradient, we evaluated (1) changes in average concentrations and temporal variation, (2) scale breaks in catchment area-concentration relationships, and (3) the potential importance of groundwater inputs and instream processes as drivers of change. Results indicated that spatial and temporal signals converge at ∼2–10 km2 as streams draining distinct headwater catchments coalesce and mix. Beyond 10 km2, streams tended to lose headwater signatures, reflecting a transition from shallow to deep groundwater influence. This was accompanied by a second break at ∼70–500 km2 corresponding to reduced spatial variability and a convergence of the response to snowmelt, as the dominance of deep groundwater influence increased with catchment scale. Larger catchments showed greater effect of instream processing on TOC, as concentrations predicted from the conservative mixing of upstream signals and dilution with deep groundwater were lower than measured. This study improves the understanding of scaling biogeochemical patterns and processes in stream networks, highlighting thresholds that imply shifts in the factors that shape variation in chemistry from headwaters to the sea.

Fish community succession and biomanipulation to control two common aquatic ecosystem stressors during a large-scale floodplain lake restoration

Authors

Todd D. VanMiddlesworth, Nerissa N. McClelland, Greg G. Sass, Andrew F. Casper, Timothy W. Spier, Michael J. Lemke

Biomanipulation, or management actions aimed to structure biological communities to achieve certain goals, has often been used in the restoration of aquatic ecosystems. In 2000, The Nature Conservancy acquired the Emiquon Preserve, which included two former Illinois River floodplain lakes, to restore these ecosystems. Restoration included stocking to establish a native fish community commensurate with historical records. Largemouth bass (Micropterus salmoides, bass) were also introduced to control poor water clarity and invasive common carp (Cyprinus carpio, carp). We summarized fish community characteristics and tested whether bass contributed to water clarity maintenance and limited carp during 2007–2014. The fish community was dominated by species stocked in greatest abundance, 13 of 32 species initially stocked have not been collected, and species diversity increased. No carp were observed in bass diets, water clarity declined significantly, and carp relative abundance increased. Increasing water levels during 2008–2009 diffused bass predation potential upon zooplanktivorous fishes and carp and weakened potential trophic cascading interactions. Our findings suggest that water level management, greater stocking of piscivores to maintain predator densities, prevention of gizzard shad (Dorosoma cepedianum) introduction, and/or a more diverse fish community including other native piscivores may be required to achieve long-term restoration goals.

Recovery of lake vegetation following reduced eutrophication and acidification

Authors

Lars Baastrup-Spohr, Kaj Sand-Jensen, Sissel C. H. Olesen, Hans Henrik Bruun

  1. In recent decades, many aquatic ecosystems in Europe and North America have experienced reduced inputs of nutrients and acidifying substances because of improved sewage treatment and reduced emission of sulphur oxides. We evaluated the consequences of these efforts to changes in water chemistry, species richness and community composition of aquatic macrophytes in 56 lakes in Denmark around 1990 and again around 2010.
  2. Reductions in lake water concentrations of phosphorus and nitrogen were strongest in eutrophic and hypertrophic lakes, for example, lakes which had been heavily affected by domestic sewage. These changes translated into decreased algal biomass in the most eutrophied lakes. Oligo- and mesotrophic lakes did not change significantly in terms of nutrients or algal biomass. Water clarity increased across all lakes but not significantly in specific trophic lake groups. Alkalinity and pH increased significantly (up to 2 pH-units) in low-alkaline lakes, while well-buffered high-alkaline lakes (>0.5 meq/L) did not show any change.
  3. Macrophyte species richness per lake increased, on average, by 13% during the 20-year study period. The increase was strongest in species preferring nutrient-rich conditions and could be directly attributed to reductions in phytoplankton biomass in lakes of medium water clarity. The similarity among all lakes in terms of species composition increased over the study period. This development was closely related to higher average species richness and was mainly caused by recolonisation of lakes, recovering from past eutrophication, by relatively common species (e.g., Lemna trisulca, Sparganium emersum and Potamogeton berchtoldii). Higher pH in low-alkaline lakes was accompanied by a shift from acid-tolerant to more acid-sensitive species.
  4. Our results demonstrate that investment in pollution control has been successful in terms of markedly improving water quality of lakes and, with a time lag, macrophyte species richness. Although relatively common species have spread across lakes and resulted in homogenised macrophyte communities, continued efforts to reduce pollution could ensure the survival of rare specialist species and perhaps even increase their abundance in the future.

Increased risk of cyanobacterial blooms in northern high-latitude lakes through climate warming and phosphorus enrichment

Authors

Anna Przytulska, Maciej Bartosiewicz, Warwick F. Vince

  1. Harmful cyanobacterial blooms are an increasing problem at many locations throughout the world but are rarely reported in aquatic habitats at high latitudes. Shallow lakes are a major feature of northern permafrost landscapes and are likely to experience large-scale changes in their limnological properties in the future as a consequence of climate warming.
  2. In the present study, we addressed the question of what preconditions would be necessary to stimulate the growth and dominance of bloom-forming cyanobacteria in northern fresh waters. We analysed the summer phytoplankton of 18 lakes on eroding permafrost (thaw lakes) and on glacier-scoured rock (rock basin lakes) in subarctic Quebec, Canada, to determine their phytoplankton community structure and the biomass contribution of cyanobacteria. This survey was complemented with an incubation experiment to evaluate the direct warming and indirect phosphorus (P) enrichment effects of climate change on cyanobacterial bloom development.
  3. All lakes contained diverse phytoplankton communities, often dominated by chrysophytes, dinoflagellates and chlorophytes. Cyanobacteria were present in all waterbodies, but their contribution to the total community biovolume was highly variable (mean of 8.7%, range 0.1%–47%). Cyanobacterial community biovolumes correlated positively with surface water temperatures, and negatively with dissolved organic carbon, soluble reactive phosphorus, iron and manganese concentrations in the surface waters.
  4. Phosphorus enrichment of water from a thaw lake resulted in a fourfold increase of chlorophyll a (Chl-a) and an increase in the cyanobacterial pigments echinenone and zeaxanthin. The phytoplankton counts showed that there was a sharp decrease in diversity (expressed as decline of the Shannon–Wiener index from 1.69 to 0.16), accompanied by a shift to cyanobacterial dominance, notably by the heterocystous, potentially toxic species Dolichospermum cf. planctonicum. Increased temperature led to an initial doubling of cyanobacterial biovolume, followed by the development of a chrysophyte bloom. Combined warming and P enrichment led to reduced phytoplankton biodiversity, with a community composed of cyanobacteria and chrysophytes. There was also a pronounced response by the picophytoplankton community; picocyanobacteria were strongly stimulated by P enrichment, while picoeukaryotes increased in response to warming.
  5. The current inoculum levels of cyanobacteria in subarctic lakes and their responsiveness to temperature and phosphorus indicate the potential for an abrupt increase in their abundance, accompanied by a decrease in phytoplankton diversity. Ongoing climate change will increase the risk of noxious cyanobacterial blooms in northern lakes and ponds, with potentially negative consequences for higher trophic levels.

Nitrification contributes to winter oxygen depletion in seasonally frozen forested lakes

Authors

S. M. Powers, H. M. Baulch, S. E. Hampton, S. G. Labou, N. R. Lottig, E. H. Stanley

In lakes that experience seasonal ice cover, understanding of nitrogen–oxygen coupling and nitrification has been dominated by observations during open water, ice-free conditions. To address knowledge gaps about nitrogen–oxygen linkages under ice, we examined long-term winter data (30 + years, 2–3 sample events per winter) in 7 temperate lakes of forested northern Wisconsin, USA. Across lakes and depths, there were strong negative relationships between dissolved oxygen (DO) and the number of days since ice-on, reflecting consistent DO consumption rates under ice. In two bog lakes that routinely experience prolonged winter DO concentrations below 1.0 mg L−1, nitrate accumulated near the ice surface mainly in late winter, suggesting nitrification may depend on biogenic oxygen from photosynthesis. In contrast, within five oligotrophic-mesotrophic lakes, nitrate accumulated more consistently over winter and often throughout the water column, especially at intermediate depths. Exogenous inputs of nitrate to these lakes were minimal compared to rates of nitrate accumulation. To produce the nitrate via in-lake nitrification, substantial oxygen consumption by ammonium oxidizing microbes would be required. Among lakes and depths that had significant DO depletion over winter, the stoichiometric nitrifier oxygen demand ranged from 1 to 25% of the DO depletion rate. These estimates of nitrifier-driven DO decline are likely conservative because we did not account for nitrate consumed by algal uptake or denitrification. Our results provide an example of nitrification at temperatures < 5 degrees C having a substantial influence on ecosystem-level nitrogen and oxygen availability in seasonally-frozen, northern forested lakes. Consequently, models of under-ice dissolved oxygen dynamics may be advanced through consideration of nitrification, and more broadly, coupled nitrogen and oxygen cycling.

Scaling Dissolved Nutrient Removal in River Networks: A Comparative Modeling Investigation

Authors

Sheng Ye, Alexander J. Reisinger, Jennifer L. Tank, Michelle A. Baker, Robert O. Hall Jr., Emma J. Rosi, Murugesu Sivapalan

Along the river network, water, sediment, and nutrients are transported, cycled, and altered by coupled hydrological and biogeochemical processes. Our current understanding of the rates and processes controlling the cycling and removal of dissolved inorganic nutrients in river networks is limited due to a lack of empirical measurements in large, (non-wadeable), rivers. The goal of this paper was to develop a coupled hydrological and biogeochemical process model to simulate nutrient uptake at the network scale during summer baseflow conditions. The model was parameterized with literature values from headwater streams, and empirical measurements made in 15 rivers with varying hydrological, biological, and topographic characteristics, to simulate nutrient uptake at the network scale. We applied the coupled model to 15 catchments describing patterns in uptake for three different solutes to determine the role of rivers in network-scale nutrient cycling. Model simulation results, constrained by empirical data, suggested that rivers contributed proportionally more to nutrient removal than headwater streams given the fraction of their length represented in a network. In addition, variability of nutrient removal patterns among catchments was varied among solutes, and as expected, was influenced by nutrient concentration and discharge. Net ammonium uptake was not significantly correlated with any environmental descriptor. In contrast, net daily nitrate removal was linked to suspended chlorophyll a (an indicator of primary producers) and land use characteristics. Finally, suspended sediment characteristics and agricultural land use were correlated with net daily removal of soluble reactive phosphorus, likely reflecting abiotic sorption dynamics. Rivers are understudied relative to streams, and our model suggests that rivers can contribute more to network-scale nutrient removal than would be expected based upon their representative fraction of network channel length.