Conditions that promote the formation of black bloom in aquatic microcosms and its effects on sediment bacteria related to iron and sulfur cycling

Authors

Chi Zhou, Teng Miao, Lai Jiang, Hang Zhang, Yi Zhang, Xu Zhang

Black bloom occurs frequently in eutrophic waters. We investigated the conditions promoted the formation of black bloom via in-situ measurement in two aquatic microcosms and the effects of black bloom on the bacterial community composition. Although larger changes in dissolved oxygen (DO) were detected in the Hydrilla verticillata-dominated microcosm over the 90-day simulation, black bloom occurred more readily in the phytoplankton-dominated than macrophyte-dominated microcosm under conditions of O2 depletion and temperature above 30 °C. The sediment bacterial community composition shifted after black bloom; the relative abundance of Thiobacillus and Sideroxydans, which oxidize iron (Fe) and sulfur (S), decreased by 47% and 48%, respectively, in the phytoplankton-dominated microcosm and by 18% and 20% in the macrophyte-dominated microcosm. By contrast, Desulfatiglans increased by 13% and 19%, respectively, after black bloom. Furthermore, inter-taxa correlations remarkably changed according to co-occurrence network analysis. Thirty-six different taxa from the phylum to the genus level were identified as biomarkers of sediments collected before and after the black bloom event. Most of these biomarkers are related to Fe/S cycling in aquatic ecosystems.

Diurnal variations in sulfur transformations at the chemocline of a stratified freshwater lake

S Lake Kinneret

Authors

Khoren Avetisyan,Werner Eckert, Alyssa J. Findlay, Alexey Kamyshny Jr.

In order to characterize biogeochemical sulfur cycling in the metalimnion of a thermally stratified freshwater lake, we followed changes in the concentrations and isotopic composition of sulfur species during a 24-h period, during which the chemocline oscillated at an amplitude of 5.3 m due to internal wave activity. Hourly sampling at a fixed depth (17.1 m) enabled study of redox changes during the transition from oxic to sulfidic conditions and vice versa. The oxidation–reduction potential, pH, conductivity and turbidity correlated linearly with the water temperature (a proxy for depth relative to the chemocline). The highest concentrations of thiosulfate and sulfite were detected approximately 2.5 m below the chemocline. Concentrations of zero-valent sulfur increased ~ 10 fold when the chemocline rose into the photic zone due to phototrophic sulfide oxidation. Triple isotopic composition of sulfur species indicates a shift with depth from values typical for sulfate reduction right below the chemocline to values which may be explained by either sulfate reduction alone or by a combination of microbial sulfate reduction and microbial sulfate disproportionation. We conclude that consumption of hydrogen sulfide at the chemocline of Lake Kinneret is controlled by the combination of its chemical and/or chemotrophic oxidation to sulfur oxoanions and predominantly phototrophic oxidation to zero-valent sulfur.

Elucidating functional microorganisms and metabolic mechanisms in a novel engineered ecosystem integrating C, N, P and S biotransformation by metagenomics

wr_14172_fx1_ga_wc_pdf

Authors

Yan Zhang, Zheng-shuang Hua, Hui Lu, Adrian Oehmen, Jianhua Guo

Denitrifying sulfur conversion-associated enhanced biological phosphorous removal (DS-EBPR) system is not only a novel wastewater treatment process, but also an ideal model for microbial ecology in a community context. However, it exists the knowledge gap on the roles and interactions of functional microorganisms in the DS-EBPR system for carbon (C), nitrogen (N), phosphorus (P) and sulfur (S) bioconversions. We use genome-resolved metagenomics to build up an ecological model of microbial communities in a lab-scale DS-EBPR system with stable operation for more than 400 days. Our results yield 11 near-complete draft genomes that represent a substantial portion of the microbial community (39.4%). Sulfate-reducing bacteria (SRB) and sulfide-oxidizing bacteria (SOB) promote complex metabolic processes and interactions for C, N, P and S conversions. Bins 1–4 and 10 are considered as new potential polyphosphate-accumulating organisms (PAOs), in which Bins 1–4 can be considered as S-related PAOs (S-PAOs) with no previously cultivated or reported members. Our findings give an insight into a new ecological system with C, N, P and S simultaneous bioconversions and improve the understanding of interactions among SRB, SOB, denitrifiers and PAOs within a community context.

Estimation of water quality dynamics under long-term anoxic state in organically polluted reservoir by field observations and improved ecosystem model

Ecosyst Model

Authors

Tran Tuan Thach, Masayoshi Harada, Kazuaki Hiramatsu, Toshinori Tabata

In closed water bodies with significant organic pollution, anoxification due to thermal stratification leads to the elution of nitrogen and phosphorus from the bottom sediment and the generation of sulfide, resulting in further degradation of the water environment. This study focuses on the water quality dynamics in an organically polluted reservoir exhibiting long-term anoxification using two approaches: (1) field observations of seasonal changes in vertical profiles of dissolved oxygen, nitrogen, phosphorus, and sulfide and (2) construction of a water quality prediction model based on an ecosystem model incorporated with anaerobic biochemical processes. Iron and sulfate reduction occurred simultaneously because nitrate–nitrogen was reduced by denitrifying bacteria after the anoxification, and iron reduction became the main factor of the increase in ammonium–nitrogen and phosphate–phosphorus. The redox state of the bottom sediment surface, when anoxification began to occur, greatly affected the water quality dynamics caused by gradual reductive reactions under anaerobic conditions. Furthermore, the calculation accuracy of ammonium–nitrogen, phosphate–phosphorus, and sulfide was highly improved by modifying the conventional model based on the field observations. The characteristics of water quality under anaerobic conditions were sufficiently reflected in the upgraded ecosystem model. The proposed water quality prediction model could be used to quantitatively estimate the water environment dynamics in organically polluted water bodies. The model could be developed further in the future to solve the problems caused by long-term anoxification.

Methylmercury and methane production potentials in North Carolina Piedmont stream sediments

MeHg Streams

Authors

P. W. Blum, A. E. Hershey, M. T.-K. Tsui, C. R. Hammerschmidt, A. M. Agather

Methylated mercury (MeHg) can be produced by all microbes possessing the genes hgcA and hgcB, which can include sulfate-reducing bacteria (SRB), iron-reducing bacteria (FeRB), methane-producing archaea (MPA), and other anaerobic microbes. These microbial groups compete for substrates, including hydrogen and acetate. When sulfate is in excess, SRB can outcompete other anaerobic microbes. However, low concentrations of sulfate, which often occur in stream sediments, are thought to reduce the relative importance of SRB. Although SRB are regarded as the primary contributors of MeHg in many aquatic environments, their significance may not be universal, and stream sediments are poorly studied with respect to microbial Hg methylation. We evaluated suppression of methanogenesis by SRB and the potential contributions from SRB, MPA and other MeHg producing microbes (including FeRB) to the production of MeHg in stream sediments from the North Carolina Piedmont region. Lower methanogenesis rates were observed when SRB were not inhibited, however, application of a sulfate-reduction inhibitor stimulated methanogenesis. Greater MeHg production occurred when SRB were active. Other MeHg producing microbes (i.e., FeRB) contributed significantly less MeHg production than SRB. MPA produced MeHg in negligible amounts. Our results suggest that SRB are responsible for the majority of MeHg production and suppress methanogenesis in mid-order stream sediments, similar to other freshwater sediments. Further investigation is needed to evaluate the generality of these findings to streams in other regions, and to determine the mechanisms regulating sulfate and electron acceptor availability and other potential factors governing Hg methylation and methane production in stream sediments.

Spatio-temporal dynamics of sulfur bacteria during oxic–anoxic regime shifts in a seasonally stratified lake

Sulfur

Authors

Muhe Diao, Jef Huisman, Gerard Muyzer

Sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria drive major transformations in the sulfur cycle, and play vital roles in oxic–anoxic transitions in lakes and coastal waters. However, information on the succession of these sulfur bacteria in seasonally stratified lakes using molecular biological techniques is scarce. Here, we used 16S rRNA gene amplicon sequencing to study the spatio-temporal dynamics of sulfur bacteria during oxic–anoxic regime shifts in Lake Vechten. Oxygen and sulfate were mixed throughout the water column in winter and early spring. Meanwhile, SRB, green sulfur bacteria (GSB), purple sulfur bacteria (PSB), and colorless sulfur bacteria (CSB) exclusively inhabited the sediment. After the water column stratified, oxygen and nitrate concentrations decreased in the hypolimnion and various SRB species expanded into the anoxic hypolimnion. Consequently, sulfate was reduced to sulfide, stimulating the growth of PSB and GSB in the metalimnion and hypolimnion during summer stratification. When hypoxia spread throughout the water column during fall turnover, SRB and GSB vanished from the water column, whereas CSB (mainly Arcobacter) and PSB (Lamprocystis) became dominant and oxidized the accumulated sulfide under micro-aerobic conditions. Our results support the view that, once ecosystems have become anoxic and sulfidic, a large oxygen influx is needed to overcome the anaerobic sulfur cycle and bring the ecosystems back into their oxic state.

Spatiotemporal shift in sulphide concentration in hypolimnic water column in Lake Hiruga, a saline lake in Japan

Authors

Ryuji Kondo, Misaki Momoki, Makina Yamamoto, Atsushi Kaneda

A 2-year study was designed to investigate the spatiotemporal distribution of sulphide in the water column of a saline lake, Lake Hiruga in Fukui, Japan. Water samples were collected in Lake Hiruga periodically between April 2014 and March 2016 at appropriate depths with simultaneous in situ measurements of physicochemical parameters such as temperature, salinity and dissolved oxygen (DO) concentration. Sulphide started accumulating in the hypolimnion in September 2014, whilst that did in June 2015. The sulphide concentrations increased toward the end of December in both 2014 and 2015. Then the sulphide disappeared from the hypolimnion in April 2015 and February 2016. The difference in starting season of the sulphide accumulation was closely connected with DO concentrations in the hypolimnion in circulation periods of winter season. The DO concentrations were regulated by water column stability before thermal stratification periods. Our analysis of the sulphide distribution for the 2 years of the study suggested that accumulation of sulphide in the hypolimnion during stratified periods appears to be associated with strength of water column stability in the winter-spring seasons before stagnant periods in Lake Hiruga.

Relationship of nutrient dynamics and bacterial community structure at the water–sediment interface using a benthic chamber experiment

Authors

Bo-Min Ki, In Ae Huh, Jung-Hyun Choi & Kyung-Suk Cho

The relationships between nutrient dynamics and the bacterial community at the water–sediment interface were investigated using the results of nutrient release fluxes, bacterial communities examined by 16S rRNA pyrosequencing and canonical correlation analysis (CCA) accompanied by lab-scale benthic chamber experiment. The nutrient release fluxes from the sediments into the water were as follows: −3.832 to 12.157 mg m−2 d−1 for total phosphorus, 0.049 to 9.993 mg m−2 d−1 for PO4-P, −2.011 to 41.699 mg m−2 d−1 for total nitrogen, −7.915 to −0.074 mg m−2 d−1 for NH3-N, and −17.940 to 1.209 mg m−2 d−1 for NO3-N. To evaluate the relationship between the bacterial communities and environmental variables, CCA was conducted in three representative conditions: in the overlying water, in the sediment at a depth of 0–5 cm, and in the sediment at a depth of 5–15 cm. CCA results showed that environmental variables such as nutrient release fluxes (TN, NH4, NO3, TP, and PO4) and water chemical parameters (pH, DO, COD, and temperature) were highly correlated with the bacterial communities. From the results of the nutrient release fluxes and the bacterial community, this study proposed the hypothesis for bacteria involved in the nutrient dynamics at the interface between water and sediment. In the sediment, sulfate-reducing bacteria (SRB) such as Desulfatibacillum, Desulfobacterium, Desulfomicrobium, and Desulfosalsimonas are expected to contribute to the decomposition of organic matter, and release of ammonia (NH4+) and phosphate (PO43−). The PO43− released into the water layer was observed by the positive fluxes of PO43−. The NH4+ released from the sediment was rapidly oxidized by the methane-oxidizing bacteria (MOB). This study observed in the water layer dominantly abundant MOB of Methylobacillus, Methylobacter, Methylocaldum, and Methylophilus. The nitrate (NO3) accumulation caused by the oxidation environment of the water layer moved back to the sediment, which led to the relatively large negative fluxes of NO3, compared to the small negative fluxes of NH4+.